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Outline

• Part II: Second-Order Response of Nanoscale Metals
– higher-multipole radiation
– dipole limit in effective response
– nanodimers with nanogaps
– local-field effects
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Second-order nonlinear optics

• Second-order polarization

• Vector quantities E   P

• Tensorial response
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Symmetry issues

• Spatial symmetry
– symmetry operations
– interdependent tensor components

• Inversion

• Surfaces and thin films
– centrosymmetry broken
– probes based on SHG and SFG
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Multipole interactions

• Hamiltonian

• Second-order response

• Magnetic and quadrupole effects
– different symmetry properties
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Multipolar?

• Light-matter interaction Hamiltonian

• Scattering (Heinz, Dadap, Brevet, …)

– dipolar interaction
– retardation across particles

• Multipolar structures (Zyss, …)

– octupolar molecules
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Metal nanoparticles

• Plasmon resonances
– collective oscillations of 

conduction electrons

• Resonances depend on
– size and shape
– mutual ordering and coupling
– dielectric environment

• Nanoscale variations

– local fields
– ”hot spots”

– material properties
– strong gradients

tieEE  0

enhanced nonlinear
response

multipole effects

local
field
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Second-order response

• Symmetry rule
– noncentrosymmetric structures needed

• Normal incidence
– avoid coupling with traditional

surface nonlinearity
– sample must appear noncentrosymmetric

• Basic shapes
– L-shaped nanoparticles
– T-shaped nanodimers with a nanogap

• Typical sample dimensions
– period 400-500 nm
– gold thickness 20 nm
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Theoretical descriptions

• Traditional susceptibility

• Effective medium approach?
– sub-wavelength structure
– resonant surface modes exist

• Proper approach
– coupling of radiation fields to modes
– local material properties
– local nonlinear sources

,
(2 ) ( ) ( )i ijk j k
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nanoscale variations

excitation depends on 
experimental details

Dadap et al., 
PRL 83, 4045 (1999)
JOSAB 21, 1328 (2004)
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Nonlinear response tensor

• Definition [JOptA 8, S278 (2006)]

– macroscopic input-output fields (”scattering matrix”)

• Disadvantage
– specific to experiment, not the sample itself

• Advantages
– avoids nanoscopic difficulties
– directly measurable quantities
– all multipoles implicit
– electric-dipole selection rules
– equivalent to effective-medium susceptibility
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Tensor analysis

• Fundamental beam [JOptA 8, S278 (2006)]

– QWP modulation of polarization

• Polarized SHG signals

• Fit coefficients

2 2(2 )i i x i y i x yE f E g E h E E   

x y xxx yxxf A A  

relative complex
values of Aijk

0 90 180 270 360
QWP Angle [degrees]

0

1

2

3

4

SH
 In

te
ns

ity
 [a

rb
. u

ni
ts

]

Ex

x

y




Ex

Ey
QWP

1060 nm
170 fs



TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Physics Nanophotonics Summer School, Erice 19.7.2012 12

Early results

• Linear spectra
[JOptA 7, S110 (2005); APL 86, 183109 (2005)]

– axis shifts and dispersion of axes
– optical activity

• Second-harmonic response
[Opt. Exp. 12, 5418 (2004); 14, 950 (2006)]

– ”forbidden signals”
– circular-difference effects
– chiral symmetry breaking due to defects
– varying levels of equivalent signals

• Nonlinear microscopy of nanodots
[New J. Phys. 10,013001 (2008)]

– inhomogeneous tensorial SHG and THG
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Multipole effects

• Multipole sources
– electric dipoles
– magnetic dipoles
– electric quadrupoles

• Higher multipoles
– magnetic dipoles and electric 

quadrupoles cannot be separated?
– can be separated from electric 

dipoles

opposite interference
in transmission and 

reflection
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Multipole experiment

• Fundamental beam
– modulate polarization

with quarter-wave plate
– angle of incidence

very small (~1°)

• Second-harmonic signals
– s-polarized detection
– compare reflected and 

transmitted lineshapes
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Results of tensor analysis

• Symmetric and antisymmetric parts

• Result [PRL 98, 167403 (2007)]
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Phenomenological model

• Full tensor analysis                            
[Opt. Express 16, 17196 (2008)]

– ”forbidden” signals dominate and have strong 
multipole part

– chiral symmetry breaking

• Role of surface defects
– non-equivalent defects at symmetrically 

opposite sites
– local dipolar sources retarded along the 

direction of observation
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Effective multipole tensors

• Effective dipolar and magnetic tensors
[New J. Phys. 13, 023025 (2011)]
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New samples

• Significantly improved quality
[Opt. Express 18, 16601(2010)]

– narrow extinction peaks
– high-order resonances observed
– stronger SHG signals

• Four equivalent signals
– all lineshapes overlap
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effective dipole
limit reached
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Enhancement in nanogaps

gap-dependent FWM
[Danckwerts and Novotny,

PRL 98, 026104 (2007)]

bowtie antenna
[Fromm et al.,Nano
Lett. 4, 957 (2004)]

resonant antenna
[Mühlschlegel et al.,

Science 308, 1607 (2005)]

self-similar spheres
for SHG
[Li et al., PRB 72,
153401 (2005)]

coupled dimers
[Atay et al., Nano
Lett. 4, 1627 (2004)]
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Designer dimers for SHG

• Symmetry rule
– noncentrosymmetric structures needed

• Nanodimers [Nano Lett. 7, 1251 (2007)]

– T shape
– noncentrosymmetric
– vary gap between the bars
– resonant with 1060 nm laser

• Expected result
– only Y polarization enhanced
– smallest gap leads to largest                                       

enhancement

X

Y
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Gap dependence of SHG

• SHG signals allowed by symmetry
– pure polarization combinations for 

normal incidence
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Calculated local-field distributions

• Fundamental field
– plasmon resonance with 

the dimer
– strong local-field effects
– polarization conversion

• Second-harmonic field
– off-resonant
– weak local-field effects

local field contains 
new polarization 

components Y incident, Y local

2 nm 23 nm

X incident, Y local

2 nm 23 nm

500 nm
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Origin of SHG

• Local-field distribution
– hot spots near the boundary of the dimer

• Surface nonlinearity
– dominated by local component
– integrate response around dimer perimeter

• Gap region
– formally noncentrosymmetric
– responses from top and                                                        

bottom tend to cancel nn X

Y

nnn

nnn

n

nnn

nnn

n

nnn

parts with opposite 
normal tend to cancel

asymmetric field 
distribution required

[Nano Lett. 7, 1251 (2007)]



TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Physics Nanophotonics Summer School, Erice 19.7.2012 24

Chiral symmetry breaking

• Slanted bar orientations
– reflection symmetry broken

• Circular-difference response

samples are chiral

reflection plane

2 LHC RHC

LHC RHC

I ICDR
I I
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Local-field calculations
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Part II: Conclusions

• Multipole effects
– higher multipoles arise from surface defects

• Dipole limit reached
– improved sample quality
– multipole effects suppressed
– prerequisite for nonlinear metamaterials

• Nanodimers
– complicated gap dependence of SHG
– symmetry and polarization of local fields
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