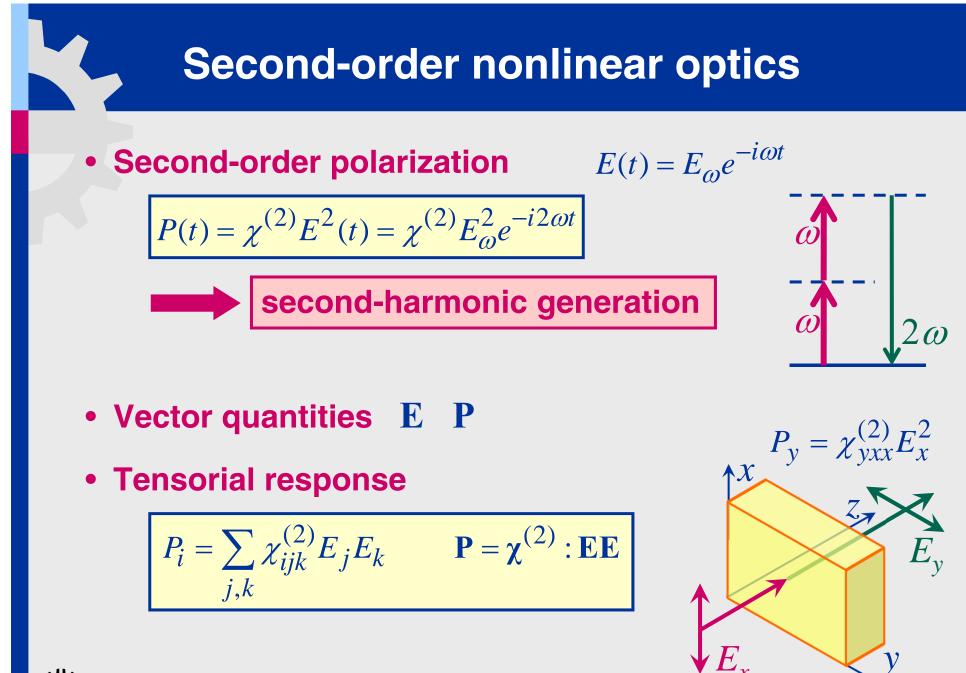
Nonlinear optics with metals

Martti Kauranen Department of Physics Tampere University of Technology Finland



• Part II: Second-Order Response of Nanoscale Metals

- higher-multipole radiation
- dipole limit in effective response
- nanodimers with nanogaps
- local-field effects

Symmetry issues

mirror

plane

- Spatial symmetry
 - symmetry operations
 - interdependent tensor components

$$\chi_{ijk}^{(2)} \neq 0 \quad \chi_{ijk}^{(2)} = C \chi_{lmn}^{(2)}$$

• Inversion $r \rightarrow -r$ $E \rightarrow -E$ $P \rightarrow -P$

$$-\mathbf{P} = \chi^{(2)} : (-\mathbf{E})^2 = \chi^{(2)} : \mathbf{E}^2 = \mathbf{P}$$

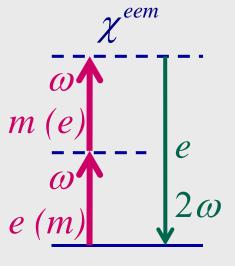
Surfaces and thin films

- centrosymmetry broken
- probes based on SHG and SFG

Department of Physics

 2ω

Multipole interactions


- Hamiltonian $H = -\mu \cdot \mathbf{E} \mathbf{m} \cdot \mathbf{B} \mathbf{Q} : \nabla \mathbf{E} + \cdots$ weak
- Second-order response

$$\mathbf{P}_{2\omega} = \boldsymbol{\chi}^{eee} : \mathbf{E}_{\omega} \mathbf{E}_{\omega} + \boldsymbol{\chi}^{eem} : \mathbf{E}_{\omega} \mathbf{B}_{\omega} + \boldsymbol{\chi}^{eeQ} : \mathbf{E}_{\omega} \nabla \mathbf{E}_{\omega}$$
$$\mathbf{M}_{2\omega} = \boldsymbol{\chi}^{mee} : \mathbf{E}_{\omega} \mathbf{E}_{\omega} \qquad \mathbf{Q}_{2\omega} = \boldsymbol{\chi}^{Qee} : \mathbf{E}_{\omega} \mathbf{E}_{\omega}$$

Magnetic and quadrupole effects

- different symmetry properties

electric-dipole-forbidden effects can occur

Multipolar?

Light-matter interaction Hamiltonian

 $H = -\mathbf{\mu} \cdot \mathbf{E} - \mathbf{m} \cdot \mathbf{B} - \mathbf{Q} : \nabla \mathbf{E} + \cdots$

multipolar susceptibilities

- Scattering (Heinz, Dadap, Brevet, ...)
 - dipolar interaction
 - retardation across particles

Mie-type multipolar radiation patterns

- Multipolar structures (Zyss, ...)
 - octupolar molecules

 χ^{eee} χ^{eem} χ^{eeQ} χ^{mee} χ^{Qee}

Metal nanoparticles

 $E = E_0 e^{-i\omega t}$

local

field

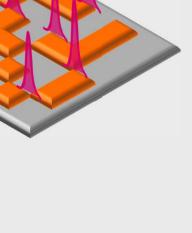
Plasmon resonances

 – collective oscillations of conduction electrons

Resonances depend on

- size and shape
- mutual ordering and coupling
- dielectric environment

Nanoscale variations


- local fields
- "hot spots"
- material properties
- strong gradients

Department of Physics

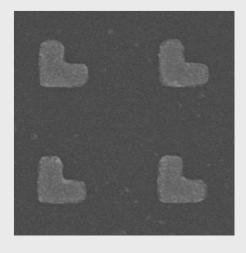
Second-order response

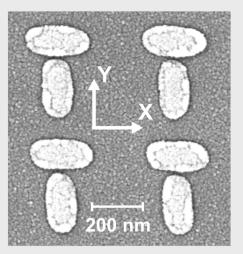
Symmetry rule

- noncentrosymmetric structures needed

Normal incidence

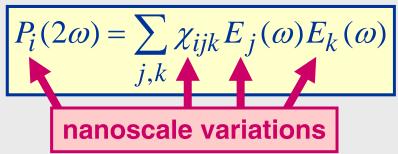
- avoid coupling with traditional surface nonlinearity
- sample must appear noncentrosymmetric

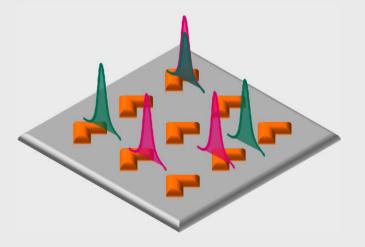

• Basic shapes


- L-shaped nanoparticles
- T-shaped nanodimers with a nanogap

Typical sample dimensions

- period 400-500 nm
- gold thickness 20 nm





Theoretical descriptions

Traditional susceptibility

• Effective medium approach?

- sub-wavelength structure
- resonant surface modes exist

excitation depends on experimental details

Dadap et al.,

PRL 83, 4045 (1999)

JOSAB 21, 1328 (2004)

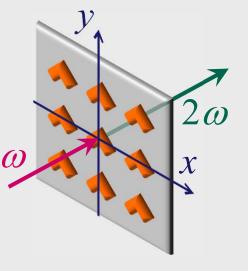
- Proper approach
 - coupling of radiation fields to modes
 - local material properties
 - local nonlinear sources

*

AMPERE UNIVERSITY OF TECHNOLOGY
Department of Physics

9

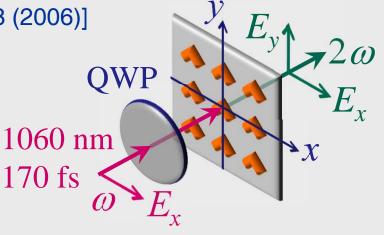
Nonlinear response tensor

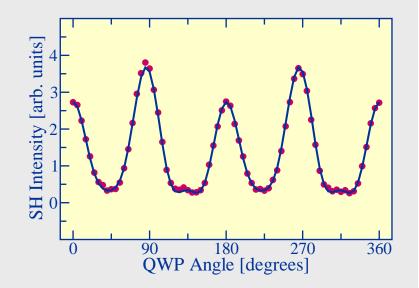

- Definition [JOptA 8, S278 (2006)]
 - macroscopic input-output fields ("scattering matrix")

$$E_i(2\omega) = \sum_{j,k} A_{ijk} E_j(\omega) E_k(\omega)$$

Disadvantage

- specific to experiment, not the sample itself
- Advantages
 - avoids nanoscopic difficulties
 - directly measurable quantities
 - all multipoles implicit
 - electric-dipole selection rules
 - equivalent to effective-medium susceptibility


Tensor analysis


- Fundamental beam [JOptA 8, S278 (2006)]
 - QWP modulation of polarization
- Polarized SHG signals

$$E_i(2\omega) = f_i E_x^2 + g_i E_y^2 + h_i E_x E_y$$

• Fit coefficients

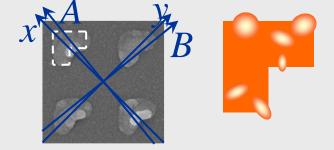
$$F_{x\pm y} = A_{xxx} \pm A_{yxx}$$
relative completion values of A_{ijk}

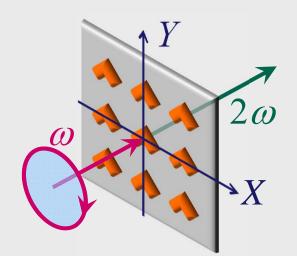
ех

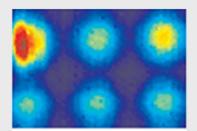
Early results

Linear spectra

[JOptA 7, S110 (2005); APL 86, 183109 (2005)]

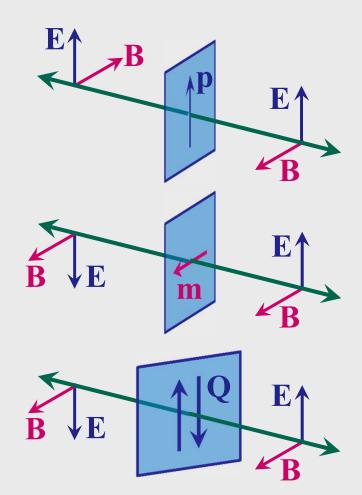

- axis shifts and dispersion of axes
- optical activity


Second-harmonic response


[Opt. Exp. 12, 5418 (2004); 14, 950 (2006)]

- "forbidden signals"
- circular-difference effects
- chiral symmetry breaking due to defects
- varying levels of equivalent signals
- Nonlinear microscopy of nanodots [New J. Phys. 10,013001 (2008)]
 - inhomogeneous tensorial SHG and THG

Multipole effects


Multipole sources

- electric dipoles
- magnetic dipoles
- electric quadrupoles

opposite interference in transmission and reflection

• Higher multipoles

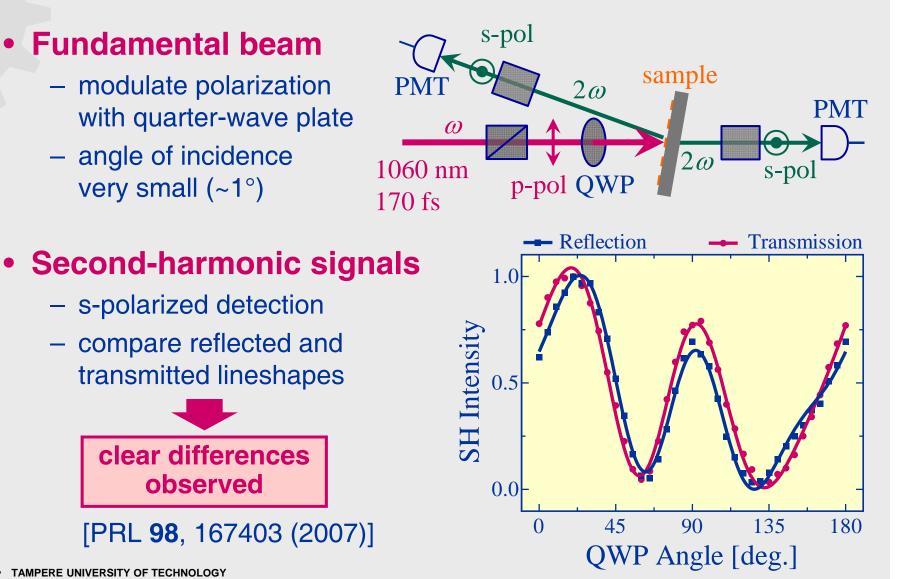
- magnetic dipoles and electric quadrupoles cannot be separated?
- can be separated from electric dipoles

Multipole experiment

Fundamental beam

- modulate polarization with quarter-wave plate
- angle of incidence very small (~1°)

s-polarized detection


compare reflected and

transmitted lineshapes

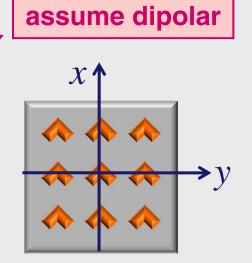
clear differences

observed

MPERE UNIVERSITY OF TECHNOLOGY

—

Department of Physics


Results of tensor analysis

Symmetric and antisymmetric parts

$$\begin{vmatrix} A_{xxx} = A_{xxx}^{s} \\ A_{xyy} = A_{xyy}^{s} \pm A_{xyy}^{as} \\ A_{xxy} = A_{xxy}^{s} \pm A_{xxy}^{as} \end{vmatrix}$$

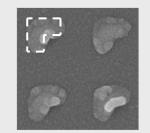
allowed resonant

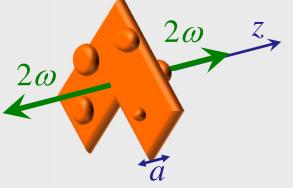
forbidden (chiral)

• Result [PRL 98, 167403 (2007)]

	transmission	reflection	$ A^{s} $	$ A^{as} $
xxx	1	1	1	1
хуу	0.66 - 0.58 <i>i</i>	0.37 - 0.67 <i>i</i>	0.81	0.15
хху	0.51 - 0.13 <i>i</i>	0.37 - 0.26 <i>i</i>	0.48	0.10

higher multipole amplitude ~20%

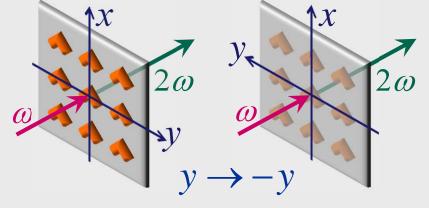

Phenomenological model

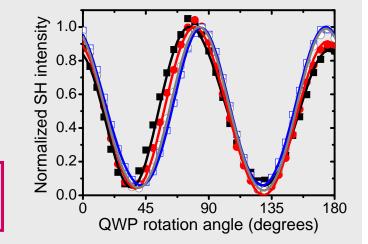

- Full tensor analysis
 - [Opt. Express 16, 17196 (2008)]
 - "forbidden" signals dominate and have strong multipole part
 - chiral symmetry breaking

Role of surface defects

- non-equivalent defects at symmetrically opposite sites
- local dipolar sources retarded along the direction of observation

$$\mathbf{E}(2\omega) = \mathbf{p}_{1}e^{-ika/2} + \mathbf{p}_{2}e^{+ika/2} \approx \mathbf{p}_{1} + \mathbf{p}_{2} + ika(\mathbf{p}_{2} - \mathbf{p}_{1})/2$$
effective
dipole
effective
dipole
effective
quadrupole
Manophotonics Summer School, Erice 19.7.2012

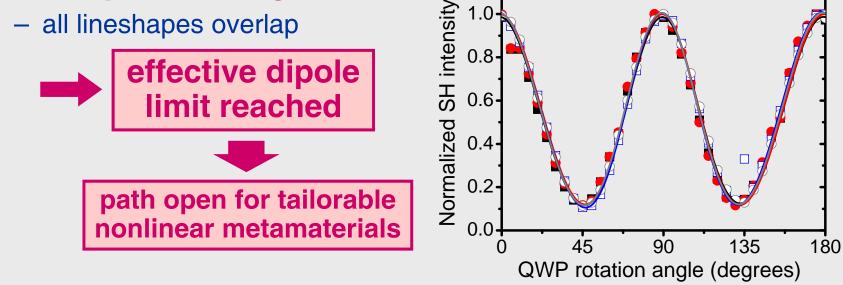

Effective multipole tensors


• Effective dipolar and magnetic tensors [New J. Phys. 13, 023025 (2011)]

$$A_{xxx} = A_{xxx}^{eee} + A_{xxy}^{eem} + A_{yxx}^{mee}$$

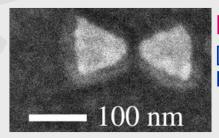
	A^{eee}_{xxx}	A_{xxy}^{eem}	A_{yxx}^{mee}
metal trans.	+	+	+
metal refl.	+	+	-
substrate trans.	+	-	+
substrate refl.	+	-	-

multipolar components about 50% of dipolar components



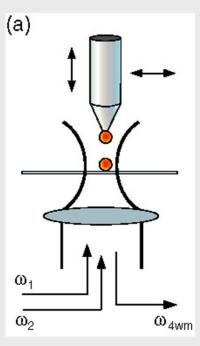
New samples

- Significantly improved quality [Opt. Express 18, 16601(2010)]
 - narrow extinction peaks
 - high-order resonances observed ____
 - stronger SHG signals


Four equivalent signals

Enhancement in nanogaps

bowtie antenna [Fromm et al.,Nano Lett. **4**, 957 (2004)]

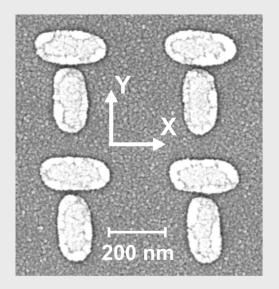

resonant antenna [Mühlschlegel et al., Science **308**, 1607 (2005)]

coupled dimers [Atay et al., Nano Lett. **4**, 1627 (2004)]

gap-dependent FWM

[Danckwerts and Novotny, PRL 98, 026104 (2007)]

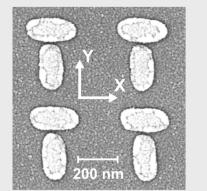
self-similar spheres for SHG [Li et al., PRB 72, 153401 (2005)]


TAMPERE UNIVERSITY OF TECHNOLOGY Department of Physics

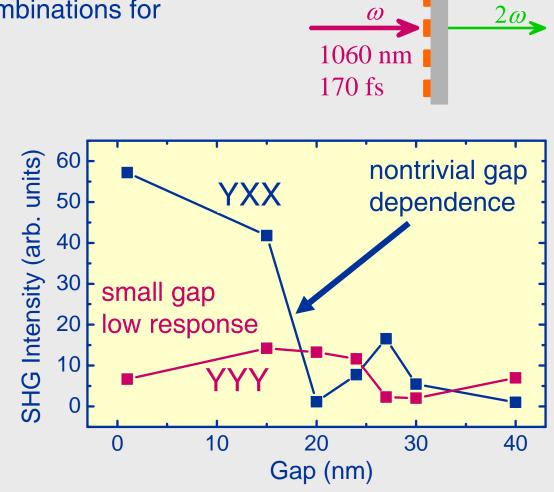
Nanophotonics Summer School, Erice 19.7.2012

Designer dimers for SHG

- Symmetry rule
 - noncentrosymmetric structures needed
- Nanodimers [Nano Lett. 7, 1251 (2007)]
 - T shape
 - noncentrosymmetric
 - vary gap between the bars
 - resonant with 1060 nm laser
- Expected result
 - only Y polarization enhanced
 - smallest gap leads to largest enhancement



Gap dependence of SHG


SHG signals allowed by symmetry

 pure polarization combinations for normal incidence

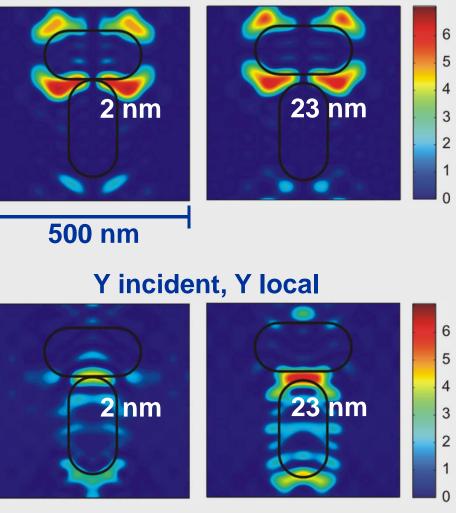
►X

• TAMPERE UNIVERSITY OF TECHNOLOGY Department of Physics

Nanophotonics Summer School, Erice 19.7.2012

Calculated local-field distributions

Fundamental field

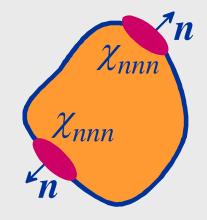

- plasmon resonance with the dimer
- strong local-field effects
- polarization conversion

local field contains new polarization components

Second-harmonic field

weak local-field effects

X incident, Y local



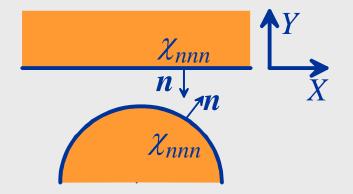
- off-resonant

Origin of SHG

Local-field distribution

- hot spots near the boundary of the dimer
- Surface nonlinearity
 - dominated by local component χ_{nnn}
 - integrate response around dimer perimeter

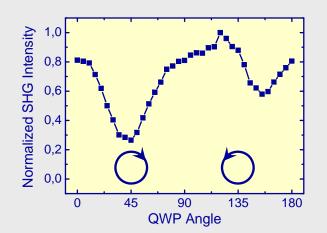
parts with opposite normal tend to cancel asymmetric field distribution required

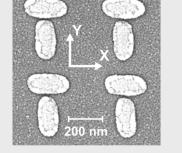

Gap region

- formally noncentrosymmetric
- responses from top and bottom tend to cancel

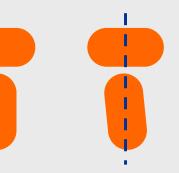
TAMPERE UNIVERSITY OF TECHNOLOGY

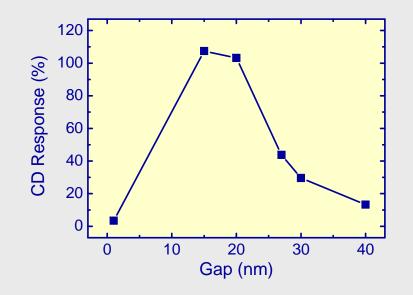
Nanophotonics Summer School, Erice 19.7.2012

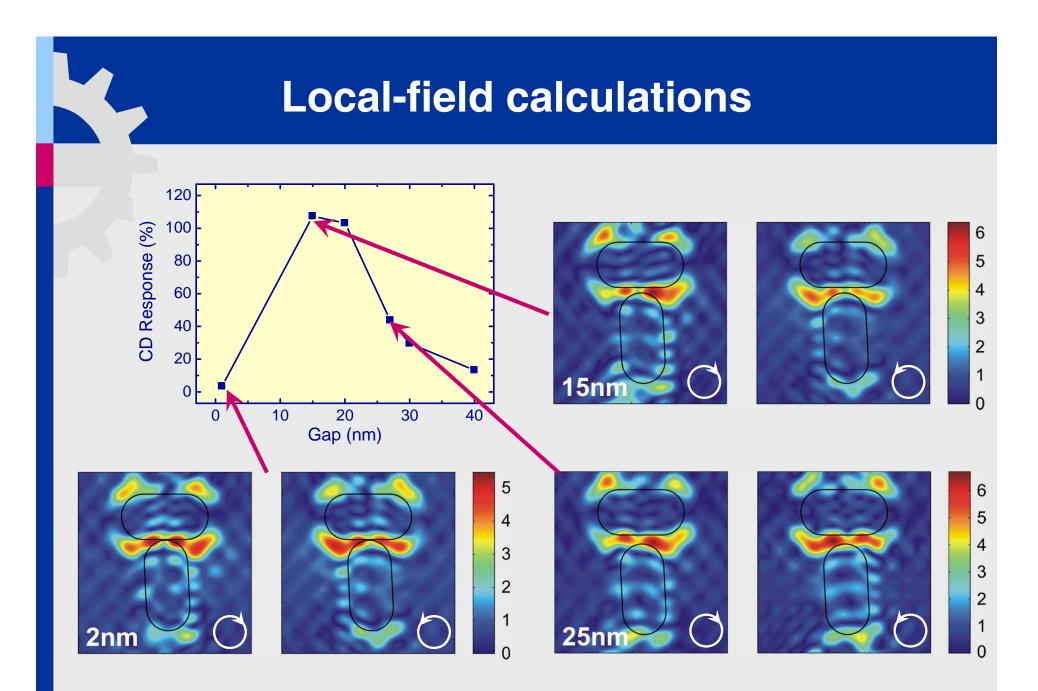

Chiral symmetry breaking


- Slanted bar orientations
 - reflection symmetry broken

samples are chiral


Circular-difference response


 $CDR = 2 \frac{I_{LHC} - I_{RHC}}{I_{LHC} + I_{RHC}}$


reflection plane

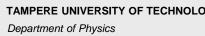
TAMPERE UNIVERSITY OF TECHNOLOGY Department of Physics

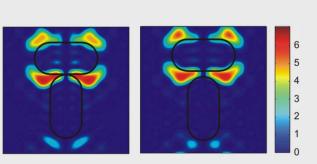
Nanophotonics Summer School, Erice 19.7.2012

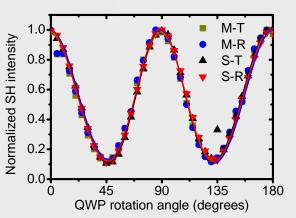
Part II: Conclusions

Multipole effects

- higher multipoles arise from surface defects


Dipole limit reached


- improved sample quality
- multipole effects suppressed
- prerequisite for nonlinear metamaterials


Nanodimers

- complicated gap dependence of SHG
- symmetry and polarization of local fields

 2ω